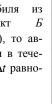
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Из перечисленного ниже к физическому явлению относится:
- 1) движение
- 2) мензурка
- 3) масса
- 4) скрепка 5) время
- 2. Установите соответствие между физическими величинами и учёными-физиками, в честь которых названы единицы этих величин.

	А. ИндуктивностьБ. РаботаВ. Частота	1) Генри 2) Джоуль 3) Герц	
1) A 1 E 2 D 2	2) A 1 E2 D2	2) A2 E1 D2	


1) A1 52 B3

2) A1 B3 B2 5) A3 B2 B3

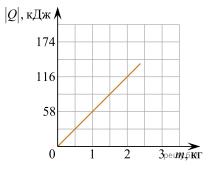
3) А2 Б1 В3

4) A2 B3 B1

3. Если средняя путевая скорость движения автомобиля из пункта A в пункт $\langle \upsilon \rangle = 19,0$ км/ч (см.рис.), то автомобиль находился в пути в течение промежутка времени Δt равно-

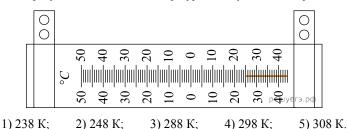
Б Примечание: масштаб указан на решуегэ.рф

240 м

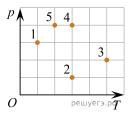

карте.

- 2) 145 c
- 3) 162 c
- 4) 179 c
- 5) 216 c
- 4. Единицей давления газа в СИ является:
- 1) джоуль;

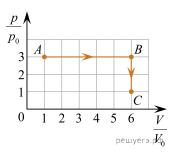
1) 128 c

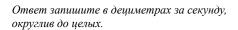

- 2) моль;
- 3) паскаль;
- 4) кельвин;
- 5) Batt.

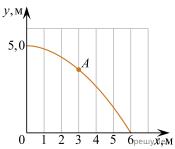
5. На рисунке представлен график зависимости количества теплоты, выделяющегося при конденсации пара некоторого вещества, находящегося при температуре кипения, от его массы. Удельная теплота парообразования L этого вещества равна:



- 1) 29 $\frac{\kappa \square m}{\kappa \Gamma}$; 2) 58 $\frac{\kappa \square m}{\kappa \Gamma}$; 3) 116 $\frac{\kappa \square m}{\kappa \Gamma}$; 4) 174 $\frac{\kappa \square m}{\kappa \Gamma}$; 5) 300 $\frac{\kappa \square m}{\kappa \Gamma}$.

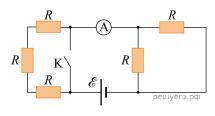

- 6. Вблизи поверхности Земли атмосферное давление убывает на 133 Па при подъёме на каждые 12 м. Если у подножия горы, высота которой h = 288 м, атмосферное давление $p_1 = 101,3$ кПа, то на её вершине давление p_2 равно:
 - 1) 95,3 kΠa 2) 96,2 κΠa 3) 97,4 κΠa 4) 98,1 κΠa 5) 99,2 κΠa
- 7. На наружной стороне окна висит термометр, показания которого представлены на рисунке. Абсолютная температура Т воздуха за окном равна:


8. На p-T диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической энергией молекул обозначено цифрой:

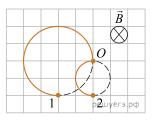


- 1) 1 3)3 4) 4 5)5
- 9. Идеальный одноатомный газ, количество вещества которого постоянно, переводят из состояния A в состояние C (см. рис.). Значения внутренней энергии U газа в состояниях A, B, C связаны соотношением:

- 1) $U_A > U_B > U_C$ 2) $U_A > U_C > U_B$ 3) $U_B > U_C > U_A$ 4) $U_C > U_A > U_C$ 5) $U_A > U_B = U_C$
- 10. Единицей напряженности электростатического поля в СИ, является: 3) 1 A
 - 1) 1 Φ
- 2) 1 Гн
- 4) 1 B/M
- 5) 1 O_M
- 11. Тело бросили горизонтально с высоты h = 5,0 м (см. рис.). В точке A модуль мгновенной скорости и тела равен ... дм/с

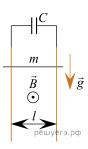

- **12.** Кинематический закон движения тела вдоль оси Ox имеет вид x(t) = A + t $Bt + Ct^2$, где A = 4.0 м, B = 2.0 м/с, C = -0.8 м/с². Если модуль результирующей всех сил, приложенных к телу, F = 64 H, то масса тела m равна ... кг.
- 13. На гидроэлектростанции с высоты h = 50 м ежесекундно падает m =300 т воды. Если полезная мощность электростанции $P_{\mathrm{полез H}}$ = 78 MBт, то коэффициент полезного действия η электростанции равен ... %.

- **14.** Два маленьких шарика массами $m_1 = 30$ г и $m_2 = 15$ г подвешены на невесомых нерастяжимых нитях одинаковой длины l так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол $\alpha = 60^\circ$, а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое и максимальная высота, на которую они поднялись $h_{\rm max} = 10,0$ см, то длина l нити равна ... см.
- **15.** Баллон вместимостью V=100 л содержит водород (M=2,0 г/моль) при температуре t=12 °C. Если давление водорода в баллоне p=450 кПа, то чему равна масса m водорода? Ответ приведите в граммах.

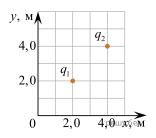

16. Вода
$$\left(\rho = 1, 0 \cdot 10^3 \, \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}, c = 4, 2 \cdot 10^3 \, \frac{\mathrm{Дж}}{\mathrm{K}\Gamma \cdot \mathrm{K}}\right)$$
 объемом $V = 250 \, \mathrm{cm}^3$

остывает от температуры $t_1=98^{\circ}\mathrm{C}$ до температуры $t_2=20^{\circ}\mathrm{C}$. Если количество теплоты, выделившееся при охлаждении воды, полностью преобразовать в работу по поднятию строительных материалов массой m=1,0 т, то они могут быть подняты на максимальную высоту h равную ... дм.

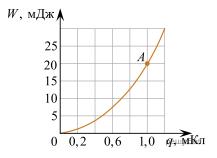
- 17. При изотермическом расширении идеальный одноатомный газ, количество вещества которого постоянно, получил количество теплоты Q_1 , а сила давления газа совершила работу $A_1=0.9$ кДж. Если при последующем изобарном нагревании газа его внутренняя энергия увеличилась на $\Delta U_2=2Q_1$, то количество теплоты Q_2 , полученное газом в изобарном процессе, равно ... кДж.
- **18.** На горизонтальной поверхности Земли стоит человек, возле ног которого лежит маленькое плоское зеркало. Глаза человека находятся на уровне H=2,0 м от поверхности Земли. Если угол падения солнечных лучей на горизонтальную поверхность $\alpha=45^{\circ}$, то человек увидит отражение Солнца в зеркале, когда он отойдёт от зеркала на расстояние l, равное ... дм.
- 19. В электрической цепи, схема которой приведена на рисунке, сопротивления всех резисторов одинаковы и равны R, а внутреннее сопротивление источника тока пренебрежимо мало. Если после замыкания ключа K идеальный амперметр показывал силу тока $I_2 = 98$ мА, то до замыкания ключа K амперметр показывал силу тока I_1 , равную ... мА.



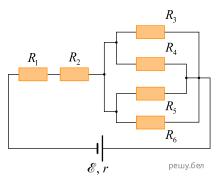
20. Два иона (1 и 2) с одинаковыми заряди $q_1=q_2$, вылетевшие одновременно из точки O, равномерно движутся по окружностям под действием однородного магнитного поля, линии индукции \vec{B} которого перпендикулярны плоскости рисунка. На рисунке показаны траектории этих частиц в некоторый момент времени t_1 . Если масса первой частицы $m_1=12$ а.е.м., то масса второй частицы m_2 равна ... а. е. м.



21. В идеальном LC-контуре, состоящем из катушки индуктивности $L=80~{\rm M}\Gamma$ н и конденсатора емкостью $C=0,60~{\rm Mk}\Phi$, происходят свободные электромагнитные колебания. Если полная энергия контура $W=66~{\rm Mk} \ Дж$, то в момент времени, когда напряжение на конденсаторе $U=10~{\rm B}$, сила тока I в катушке равна ... мA.


22. В однородном магнитном поле, модуль индукции которого B=0,44 Тл, находятся два длинных вертикальных проводника, расположенные в плоскости, перпендикулярной линиям индукции (см. рис.). Расстояние между проводниками l=10,0 см. Проводники в верхней части подключены к конденсатору, ёмкость которого C=2 Ф. По проводникам начинает скользить без трения и без нарушения контакта горизонтальный проводящий стержень массой m=2,2 г. Если электрическое сопротивление всех проводников пренебрежимо мало, то через промежуток времени $\Delta t=0,069$ с после начала движения стержня заряд q конденсатора будет равен ... **мК**л.

23. Электростатическое поле в вакууме создано двумя точечными зарядами $q_1=24$ нКл и $q_2=-32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат равен ... $\frac{B}{M}$.

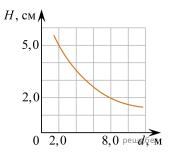

24. График зависимости энергии электростатического поля W конденсатора от его заряда q представлен на рисунке. Точке A на графике соответствует напряжение U на конденсаторе, равное ... В.

- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10.0 \,\text{Om}.$$


В резисторе R_6 выделяется тепловая мощность $P_6 = 90.0$ Вт. Если внутреннее сопротивление источника тока r = 4.00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.

- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm JI}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4$ $\frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

